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Upper-limb robotic exoskeletons for

neurorehabilitation: a review on control strategies
Tommaso Proietti, Vincent Crocher, Agnès Roby-Brami, and Nathanaël Jarrassé

Abstract—Since the late 90s, there has been a burst of research
on robotic devices for post-stroke rehabilitation. Robot-mediated
therapy produced improvements on recovery of motor capacity;
however, so far, the use of robots has not shown qualitative benefit
over classical therapist-led training session, performed on the
same quantity of movements. Multi degrees of freedom robots,
like the modern upper-limb exoskeletons, enables a distributed
interaction on the whole assisted limb and can exploit a large
amount of sensory feedback data, potentially providing new
capabilities within standard rehabilitation sessions.

Surprisingly, most publications in the field of exoskeletons
focused only on mechatronic design of the devices while little
details were given to the control aspects. On the contrary,
we do believe a paramount aspect for robots potentiality lays
on the control side. Therefore the aim of this paper is to
provide a taxonomy of currently available control strategies
for exoskeletons for neurorehabilitation, in order to formulate
appropriate questions towards the development of innovative and
improved control strategies.

Index Terms—Upper-limb robotic exoskeletons, rehabilitation,
post-stroke robotic therapy, control strategies.

I. INTRODUCTION

Since the end of the nineties, there has been a burst of

research on and development of robotic devices for rehabil-

itation, particularly for the neurorehabilitation of post-stroke

patients. Stroke is indeed the second leading cause of death in

the world and the leading cause for acquired disability in adults

[1], [2]. Stroke survivors are usually left with disabilities,

mainly motor impairments on upper-limb movements and loss

of hand dexterity, both partially recoverable by undergoing

rehabilitation [3]. Rehabilitation has been proven to be effec-

tive when it is both intense and involving for the patient [4],

and robotics is one possible solution to provide intensity, by

increasing the number of repetitions which a therapist could

impose, as well as motivation thanks to technology appeal,

virtual reality, and gaming [5], [6].

The first robots used for upper-limb rehabilitation, also

referred as manipulanda, were only able to guide the motion

of patient’s hand in the plane (for example the MIT-Manus and

MIME platforms [7]). Extensive clinical testing on the InMo-

tion ARM© robot (the commercialized version of the MIT-

Manus) confirmed the improvements of the motor capacity of

the impaired arm after robotic therapy [8]. However, so far,

the use of robots did not show extra qualitative benefits (i.e.
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improved functional recovery), over conventional therapist-led

training session, performing the same quantity of motions [9],

[10].

The willingness to address 3D movements and to work at

the joint level encouraged the researchers to design robotic

exoskeletons for neurorehabilitation. These multiple degrees

of freedom (DOF) structures, allowing distributed physical

interaction with the whole limb, could potentially provide

new capabilities within standard rehabilitation sessions. Nu-

merous upper-limb exoskeletons have therefore been recently

developed (around the mid-2000s) but their effects have still

been little studied up to now, especially clinically. Indeed, the

first and only commercially available upper-limb exoskeleton

for rehabilitation (the ArmeoPower© by Hocoma, based on

ARMinIII robot) was only released at the end of 2011 [11].

The two major features of the robotic exoskeletons are their

abilities to apply forces distributed along the assisted limbs

and to provide reliable joint measurements [10]. Although the

physical interaction through multiple interaction points raises

interest and fundamental questions from the control point

of view, most of the existing control approaches have been

developed by only considering the end-point interactions.

While many reviews on robotic exoskeletons are available,

most of them are focused on their mechanical features (for

example [12], [13], [14]). We do believe that the key charac-

teristic of exoskeletons addressing neurorehabilitation stands

in their control strategies which, on top of intrinsic mechanical

behaviour of the devices (inertia, friction, backdriveability,

etc.), dictate the human-robot interactions. Reviews on high-

level control strategies for neurorehabilitation robots, including

both manipulanda and exoskeletons, exist ([15] and [16]), but

since these were not targeting the specificities of exoskeletons,

many devices and control approaches are missing.

The aim of this paper is therefore to disclose the real

interaction capabilities of upper-limb robotic exoskeletons for

neurorehabilitation, i.e. their control laws and physical inter-

action with humans, in order to give researchers in the field an

overview of existing works, their possibilities and limitations

along with possible orientations for future developments.

Review methodology

Our review, which rises searching in the main scientific

databases (in particular PubMed, ClinicalTrials, IEEE Xplore

Digital Library, Science Direct, and Google Scholar) different

combinations of some keywords (upper-limb, rehabilitation,

robot, exoskeleton, shoulder, elbow, wrist, arm, therapy, as-

sisted, training, stroke), moves through about 100 papers
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Fig. 1. General neurorehabilitation timeline. Robot controllers should adapt
to the correct phase of the therapy of the stroke survivor. Passive and Active

are traditional terms to indicate the involvement of the subject in the training.

published before March 2016. Besides, we also conducted a

free search in the above-mentioned databases for references

listed in keywords-based findings to include larger context. For

a purpose of feasibility, we focused our analysis on the subset

of minimum 3 degrees of freedom (DOF) actuated upper-limb

exoskeletons for rehabilitation, with at least a control over two

upper-limb joints among shoulder, elbow, and wrist. Besides,

this decision reflects the idea of characterizing the available

control strategies for multi-DOF devices, which apply forces

along the assisted limb rather then acting only at the end-

effector. Furthermore, a review including most of the planar

robots is already available in literature [16]. In the following

review, we briefly illustrate every available control solution,

providing more details on the ones which were clinically

tested.

II. AVAILABLE CONTROL STRATEGIES

32 robotic exoskeletons for upper-limb rehabilitation have

been listed, considering only the devices with 3-DOF or

more controlling the motions of minimum two out of the

shoulder-elbow-wrist joint groups (see Table I). Four devices

([54], [55], [56], [57]) composed by multiple robots acting

on multiple contact points were not included in this review.

Among the 32 exoskeletons, to the authors’ knowledge, 10

devices were tested on post-stroke impaired subjects, but only

6 test provided comparisons with impaired subject control

groups which tested different rehabilitation therapies. Besides

this, roughly one third of the existing structures seems not to

be currently subject of study, or rather, no results are appearing

for these devices on the main journals and conferences for at

least three years.

Inspired by the categories presented in [16], we defined

three main global strategies for robotic-mediated rehabilita-

tion: assistance, correction and resistance, see figure 2.

• Assistance means that the robot is supporting the weight

of the impaired limb and providing forces to complete

the task. If the patient does not produce any effort, task

completion can be still achieved depending on the level

of assistance.

• Correction defines the rehabilitation situation in which the

robot is only acting when the patient is not performing the

movement correctly, forcing the impaired limb to recover

a desired inter-joint coordination.

• Resistance represents the techniques in which the robot

opposes forces to the motion (potentially increasing the

current error, for example) in order to make the task more

DOF clinical

project name nationality year a p type pHRI testing

supported motion of shoulder-elbow-wrist

ARAMIS [17] Italy 2009 6 0 e 2-sfh [17]

ARMinIV [18] Switzerland 2007 7 0 e ufh [19]

ArmeoPower1 [11] Switzerland 2011 6 0 e ufh 1

ARMOR [20] Austria 2008 8 4 e 2-uffh [20]

BONES+SUE [21] USA 2008 6 0 p ufh [22]

BOTAS [23] Japan 2013 6 0 e 2-ufh

ETS-MARSE [24] Canada 2010 7 0 e ufh

EXO-UL72 [25] USA 2011 7 0 e 2-ufh [25]

IntelliArm [26] USA 2007 7 2 e ufh

NTUH-ARM [27] Taiwan 2010 7 2 e uf

RUPERT IV [28] USA 2005 5 0 p sufh

SRE [29] UK 2003 7 0 p fh

SUEFUL 7 [30] Japan 2009 7 1 e uffh

supported motion of shoulder-elbow

- [31] France 2009 4 0 e uf

- [32] New Zealand 2014 5 0 e uh

ABLE [33] France 2008 4 0 e uf [34]

ALEx [35] Italy 2013 4 2 e ufh

AssistOn-SE [36] Turkey 2012 6 1 e ufh

CAREX [37] USA 2009 5 0 e suf

CINVESRobot-1 [38] Mexico 2014 4 0 e uf

L-Exos [39] Italy 2002 4 1 e ufh [40]

LIMPACT [41] Netherlands 2008 4 6 h uuff

MEDARM [42] Canada 2007 6 0 e uf

MGA [43] USA 2005 5 1 e uh

MULOS [44] UK 2001 5 0 e uff

Pneu-WREX [45] USA 2005 4 0 p ufh [46]

RehabExos [47] Italy 2009 4 1 e ufh

supported motion of elbow-wrist

6-REXOS [48] Sri Lanka 2015 4 2 e fh

MAHI EXO-II [49] USA 2006 5 0 e ufh 3

MAS [50] Japan 2008 4 0 p ufh

ULERD [51] Japan 2013 3 4 e uufh

Wrist Gimbal [52] USA 2013 3 0 e fh

TABLE I
EXOSKELETONS FOR UPPER LIMB REHABILITATION (3-DOF SYSTEMS

CONTROLLING AT LEAST TWO JOINTS OUT OF THE SHOULDER-ELBOW-WRIST

CHAIN). DOF: A-ACTIVE THUS ACTUATED, P-PASSIVE THUS MECHANICAL ONLY.

TYPE OF ACTUATION: E-ELECTRICAL, P-PNEUMATIC, H-HYDRAULIC. PHYSICAL

HUMAN-ROBOT INTERFACE (FIXATION LEVELS) : 2-TWO ARM EXOSKELETON,

S-SHOULDER, U-UPPER ARM, F-FOREARM, H-HANDLE. DOUBLE LETTERS INDICATES

DOUBLE INTERFACES. 1
BASED ON ARMINII, THE ONLY COMMERCIALIZED

EXOSKELETON FOR THE CLINICAL ENVIRONMENT. 2
BASED ON CADEN-7 (2006)

[53]. 3
ONGOING TEST, CLINICALTRIALS.GOV IDENTIFIER: NCT01948739.

complex for the subject, and to train his ability to correct

the movement and to adapt to external perturbations.

Contrary to assistance, correction does not assist the patient

in achieving the task. Obviously, pure correction is an ideal

case of neurorehabilitation therapy, as well as the former cate-

gorization. More often, the therapy involves several strategies

combined [10].

While resistive controllers exist for manipulanda (for ex-

ample, resistive force-field in [58], or error augmentation in

[59]), to the authors’ knowledge, to date there are no available

resistive controllers developed for exoskeletons. This could

be a consequence of the fact that exoskeletons often target

early stage chronic patients who rarely have recovered enough

motor capabilities to undergo resistive therapies. However,

most control strategies developed for manipulanda could be

translated to exoskeletons, by considering only the end-effector

control; though this solution would not take the full advantages

of dealing with multi-contact systems like the exoskeletons.

Existing controllers for exoskeletons are mostly combined
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Model-based assistance, Offline adaptive control
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Fig. 2. The three global strategies for robotic-mediated rehabilitation and the current implementations on robotic exoskeletons.

assistive-corrective controllers but there exists a variety of

implementations of each category by using different control

techniques.

A. Assistive modes

Within this type of control approaches, three groups of assis-

tive strategies were determined — passive, triggered passive,

and partially assistive control — although there exist solutions

which are mixed strategies. The distinction between passive

and partially assistive controls is thin, since if the patient

is not participating in the task, both controllers would react

similarly. Also, triggered assistance generally refers to solution

only different to initiate the assistance: once triggered, these

controllers usually exhibit either passive or partially assistive

behaviours.

1) Passive control: The simplest way to control an ex-

oskeleton is to control the motion rigidly along a desired

reference trajectory through position feedback control with

high corrective gains. In rehabilitation this passive technique

is common at early stages of the post-stroke therapy, when

the impaired limb is usually unresponsive, and thus passive

mobilization is the only feasible solution to achieve any result.

Nonetheless the feedback controller gains have to be tuned

carefully and the exoskeleton has to show a minimum of

compliance not to hurt the subject in the presence of trajectory

errors due to excessive muscle contraction, spasticity, or other

pathological synergies. Such compliance between the robot

and the human body can also be introduced mechanically,

at the fixation level with, for example, elastic straps [28] or

mechanical fuses placed serially [57].

⊲ Passive trajectory tracking: Passive control can be

achieved by adopting different techniques. The simplest is

the use of a proportional-integral-derivative (PID) feedback

control which usually regulates the position or the interaction

force along a known reference (for example, a trajectory or a

force field model), and can be applied either at the joint or at

the end-effector level. Examples of these joint controllers are

shown in [38], [52], [60], [43], [61], [47], [62], [41].

More complex approaches have been recently developed to

improve the quality of the physical interaction during passive

mobilization of patient’s limb. In [24], the authors developed

the Sliding Mode Control with Exponential Reaching Law

(SMERL), a non-linear control technique which minimizes the

tracking error on a state space projection. In [63] a fuzzy

logic technique is adopted. In order to deal with uncertain-

ties and disturbances from the environment, adaptive fuzzy

approximators estimated the dynamical uncertainties of the

human-robot system, and an iterative learning scheme was

utilized to compensate for unknown time-varying periodic

disturbances. Preliminary results on healthy people showed

better performances, in terms of tracking error and average

control input, compared to classical PID control and fuzzy

logic techniques used alone.

Different methods exist for defining reference trajectories.

For passive strategies, these references are often created by

recording the physiotherapist inputs on the subject limb at-

tached to the exoskeleton, during a teaching phase. In this

phase, the robot is generally set in a transparent mode (usually

achieved by adopting a feedforward term to compensate for the

gravity and the dynamics of the robot) to limit any resistance

to perform motions. Once recorded, the exoskeleton is ready to

replay the trajectory with its feedback controller. Teach-and-

replay is presented in [64]. In [60] teach-and-replay mode was

tested on four chronic stroke patients during 8 weeks of train-

ing. Encouraging preliminary results were obtained (increase

of Fugl-Meyer Assessment score – FMA, meaning improve-

ment of motor functionality of the paretic arms, in addition

to positive transfer to ADLs). Nevertheless, no comparisons

with control group receiving traditional therapy were provided.

Similarly to teach-and-replay, record-and-replay uses healthy

limb motions, recorded within the robot, to create reference

trajectories. This strategy was for example used in [17].

Instead of using external inputs or “healthy” trajectories

as references, some research groups have been trying to

directly detect patient motion intention by measuring muscle

activity through surface-EMG. In [65] EMG and two offline-

trained time delayed neural networks (one for the shoulder

and one for the elbow) were used to estimate and predict the

resulting torques at the joint level. By using this prediction, a

reference joint position trajectory was computed and fed to a

PD controller with gravity and friction compensation. In [66]
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an EMG-based version of the SMERL controller was provided.

In this case, EMG signals, transformed to a desired position

reference through a muscle model, acted as the reference for

the position feedback controller.

A third strategy to define reference trajectories is to de-

termine cost functions and to use optimization algorithms.

Generally the cost function aims at minimizing the jerk. This

solution is mostly used for triggered passive control (for

example in [23]) or for partially assistive controls (examples

in [67] or [68]). Due to the complexity and variety of pos-

sible actions of the upper-limb, generally the movements of

intermediate joints either occur as a consequence of the end-

effector movement in the task space (for example in [37]),

or are constrained along specific dedicated trajectories, which

are synchronized within the joint space (for example in [69]).

However, because of the redundancy of human arm, there are

no commonly accepted solution to compute joint trajectories

from task space motions [70].

Beside standard passive control approach, two other passive

strategies exist. Those either target two-arm exoskeletons

(passive mirroring) or utilize a different rehabilitative training,

i.e. the passive stretching.

⊲ Passive mirroring: Few exoskeletons have two arms

(four devices in Table I, column pHRI). For these robots, pas-

sive mirroring is a further strategy. It consists of synchronous

passive mimicking of the behaviour of the healthy limb, in

a master-slave configuration, as in [17] or in [20]. In [17] a

clinical pilot study on 14 impaired subjects (21±6 days since

stroke), based on an average of 31 sessions over 2 months,

resulted in applicability and tolerability of the robot-mediated

treatment, with similar improvements to other robot-assisted

rehabilitation therapies. In [71] passive-mirroring was imple-

mented on a single-arm robot in a master-slave configuration

with an external haptic device to control the master side of

the system.

⊲ Passive stretching: A different rehabilitative passive

training is the so-called passive stretching [26]. With this

strategy, individual joints were passively stretched by the robot

in order to identify their individual angle-resistance torque

relationships. These relationships were then used to coordinate

the passive stretching of multiple joints together. Feasibility

test performed in 3 stroke patients showed a reduction of cross-

coupled stiffness after a 40 min stretching session.

2) Triggered passive control: A slight variation of assistive

modes consists in approaches in which the user triggers

the exoskeleton assistance. This technique is frequently used

to introduce brain-machine interface (BMI) into the control

loop. These approaches are directly adapted from the field of

assistance to patients with non-recoverable impairments (like

tetraplegia). In fact, after the triggering (mainly a selection

of available targets), the exoskeleton is usually controlled

passively along pre-determined trajectories.

In [23] passive recorded-trajectory replication through BMI

control is shown. The end-effector trajectory were computed

by minimum-jerk optimization. BMI trajectory-replay trig-

gering was implemented through SSVEP (steady-state visual

evoked potential). SSVEP can be observed mainly from the

visual cortex when a person is focusing his visual attention

on a flickering stimulus. Pre-clinical testing (12 healthy and

3 upper cervical spinal cord injured subjects) were performed

to show the capacity of the system to be used by subjects to

activate different trajectory reproductions.

In order to extend patient’s control over the task, gaze track-

ing methods can also be used in addition to BCI-driven control

like in [72]. An eye-tracker together with a target-tracking

module (a Kinect camera) gave the reference position of the

target to reach to the exoskeleton controller; the BCI module

estimated user’s motion intention, modulating maximum joint

jerk, acceleration, and speed within an admissible predefined

set of values. Then a PD feedback control (helped by classical

gravity and friction compensations) performed the reaching

task. Pre-clinical testing with 3 healthy and 4 chronic stroke

patients showed that all subjects were able to operate with the

exoskeleton.

In [73] a Motor Imagery based Brain Computer Inter-

face (MI-BCI) is used to control an eight DOF exoskeleton.

Three chronic stroke survivors were able to perform passive

controlled tasks (arm motion towards a target, grasping and

releasing of an object) by producing MI of the reaching task

before the movement. Two seconds of MI activity collected,

triggered the exoskeleton to replay pre-recorded trajectories.

In [74] authors developed a similar approach, by controlling an

ArmeoPower exoskeleton through MI-BCI. 9 healthy subjects

and 2 stroke survivors were able to move the exoskeleton along

pre-defined trajectories, and these motions were brain-state

dependent, meaning that motion was performed only during

MI phases.

3) Partially assistive control: The effectiveness of pure

passive motions for stimulating neuroplasticity is known to

be limited [75], since the patient is not involved in making

any effort to perform the task. On the other side, assistance

is needed in order to reduce failures at least at the beginning

of the therapy, thus maintaining subject motivation, intensity

of the training, confidence in using the affected limb, and to

avoid negative reinforcement [6]. But as soon as the patient has

recovered a minimal amount of motor capacity, it is essential

for the robot to allow for shared control of the movements [76],

[77]. Indeed, as neurorehabilitation addresses issues related

to motor control, the devices must allow patients to express

whatever movement they can without suppressing any motor

capability [78].

Partial assistance, or assistance-as-needed [67], groups all

those control strategies which allow the impaired subject to

actively control the motion, supporting it based on perfor-

mance indexes. The most common solution to provide a partial

assistance to the impaired limb, is to increase the compli-

ance of the above-mentioned passive controllers. Instead of

rigid “industrial-type” position feedback controllers (with high

corrective gains), many controllers for exoskeletons rely on

more flexible impedance control [79], or its dual admittance

control, with reduced corrective gains to exhibit “human-like”

mechanical properties. These controllers allow to implement a

good compromise between tracking skills and compliance of

the robotic arm.

⊲ Impedance/Admittance control: Impedance control is a

model-based force controller with position feedback while its
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dual, the admittance control, is a position controller with force

feedback. Impedance control is efficient for lightweight back-

drivable exoskeletons (often cable-driven devices). In these

systems, problems arise when it is necessary to compensate for

gravity and friction. For exoskeletons that lack backdrivability,

admittance control may be more appropriate, because the

forces at the interfaces with the human limb must be measured

to move the robot, thus considering its inertia and dynamic

effects. The force-tracking trade-off feature, together with the

simplicity of implementation, are the reasons why these are

two of the most common control algorithms currently used for

rehabilitation exoskeletons [49], [64], [43], [80], [60], [81].

Adopting an admittance/impedance approach, some re-

search groups developed slightly different and more complex

strategies. In [82] the exoskeleton was controlled through two

impedance control loops, one for assistance along the end-

effector reference trajectory, the other to apply corrections

along the orthogonal direction to the trajectory. Model-based

gravity compensation was also present. The setup was sup-

ported by a virtual environment on which a reaching game

was created. A therapist could directly tune tasks complexity

on a therapy control unit. Pre-clinical testing (8 post-stroke

subjects), three one-hour rehabilitation sessions per week for

a total of six weeks, resulted in an increase of performances

and a reduction of position errors after the therapy for 5

patients. The same controller was tested in [40] on 9 impaired

subjects performing three games (pointing task, circle drawing,

and puzzle-type game). The robot-aided training induced,

independently from the post-stroke phase, statistical significant

improvements of kinesiologic and clinical parameters (such

as analysis of reaching movements, degree of functional im-

pairment through FMA, active range of motion, and Modified

Ashworth scale), as a result of the increased active ranges

of motion and improved co-contraction index for shoulder

extension/flexion.

In [83], the authors developed a model-free PID type

admittance control in task space to generate desired trajectories

for a lower-level PID position control in task space too. The

control parameters can be chosen based on kinematics and

dynamics of the human arm. Besides, a simplified model-based

gravity compensation was used. In [84] the authors compared

task space with joint space admittance control, showing that

task space control spent about 11% less of interaction energy

for a peg-in-hole task. In [30] the exoskeleton was controlled

by an end-effector impedance control. A joint torque fuzzy

logic estimator (using signals from 16 sEMG channels and a

couple of force/torque sensors) evaluated the user hand motion

intention. The fuzzy set of membership functions determined

which data considering from a combination of the two inputs:

if the EMG values were high, the estimation was only EMG-

based; if they were low, it was only force/torque based;

otherwise a continuous mixed integration of both signals

was adopted. In [51] admittance control was computed by

substituting force sensors with springs, and their compression

measured to estimate interaction force between the human

limb and the robotic device. Two control techniques were

implemented: respectively high stiffness mode when passive

DOFs of the arm (a group of 4 springs) were locked, and

resistive training when they were unlocked.

Apart from impedance-admittance controls, there exist oth-

ers examples of assistive controls in the literature. In particular,

we can describe three categories of assistance respectively

based on attractive force-fields, on human arm model, and on

offline adaptation.

⊲ Attractive force-field: [85] used, among other ap-

proaches, an attractive force field to control their exoskele-

ton during a clinical rehabilitation therapy with 15 impaired

subjects. During the trial, subjects were randomly assigned to

bilateral training (BT), unilateral training (UT), and standard

therapy (ST) and executed a total of 12 sessions of virtual re-

ality gaming (8 different games in total). While in BT partially

assisted mirroring of the unaffected limb was provided by the

robotic exoskeleton, in the UT an attractive force-field acting

only on the end-effector was determined based on the end-

effector position. For the other joints of the robot, an assistive

force was produced based on reference trajectories computed

by using the swivel angle estimation algorithm [86]. Following

these treatments all of the subjects significantly improved their

fine motor control and gross control across all the treatment

modalities. BT showed better results compared to UT but this

might have been because of more assistance from the robot to

the impaired limb. However robot-mediated therapy exhibited

comparable outcomes than standard therapy.

⊲ Model-based assistance: In [50], after an offline pos-

ture measurement through motion capture, authors derived

a muscle force estimation to maintain a desired pose, by

using a musculoskeletal human model. The reference muscle

force was then fed into the device controller together with

the current force, estimated through 3 EMG sensors, and a

proportional control drove the pneumatic actuators to provide

only the necessary force. In [87] the former method was

improved to reduce non-target muscle efforts through an

optimization algorithm, and tested for controlling quasi-static

posture-by-posture human motion.

⊲ Offline adaptive control: Adaptation trial-by-trial is

also a solution to modulate robot assistance based on different

performance indexes. In [28] the authors implemented an

iterative learning control: a feedforward assistive term was

learnt using trial-by-trial adaptation, based on the error of the

previous trial and on a fuzzy logic based non-linear function

of the tracking error statistics. The feedforward term was then

added to a PID feedback controller at the joint level. Pre-

clinical testing with 6 impaired subjects to test its usability

are shown in [88].

In [67] a PD controller was also used with a feedfor-

ward assistive term, which was adapted during the motion

depending on the dynamics of the patients extremity, the

patients neurological ability, and the patients effort, modelled

through a Gaussian radial basis function based neural network.

Assistance-as-needed was achieved by adding a force decay

term to the adaptive control law, which reduced the output

from the robot when errors in task execution were small.

The controller was tested with 11 chronic post-stroke patients.

Results interestingly shown the “slacking” behaviour of the

human motor control, meaning that, as the central nervous

system (CNS) tries to optimizes its efforts, as soon as it can
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take advantages of the controller, it leaves the controller taking

over most of the physical effort required to complete the task.

By adding the force decay term, the controller was able to

encourage the patient efforts.

Two different tests of the same controller on two different

exoskeletons were presented in [46] (clinical testing with 27

impaired subjects) and [22] (20 subjects with mild to moderate

chronic stroke). In the first study, the subjects, divided into

two groups, received either the assist-as-needed robot training,

or conventional table top therapy with the supervision of

a physical therapist. The results were moderately better by

assisting the tasks with an assist-as-needed controller. In the

second study, the subjects experienced multi-joint functional

training and single joint training, generally improving motor

function after chronic stroke. Multi-joint functional robotic

training was anyway not decisively superior to single joint

robotic training.

In [89] an adaptive PD controller, acting at the joint level, to-

gether with a model-based feedforward gravity compensation,

regulated the stiffness of a robotic exoskeleton. Tracking error

of the reference trajectory drove the trial-by-trial adaptation

of the feedback gains. In [90] a sensorless force estimator,

based on a Kalman filter, was used to dynamically determine

the exoskeleton operator’s capability performing the desired

task, in order to provide him minimal assistance with an

user-specified maximum allowable bounds on position error.

Both the two former controllers were only preliminary tested

on healthy subjects, showing the applicability of the two

approaches.

Finally, in [91] an assistive-as-needed control algorithm

tried to anticipate patients deviations from desired reference

trajectories, by utilizing an adaptive model of the patient’s

dysfunctionality. Such a dysfunctional profile of the patient

should be provided by the therapist, depending on both the

specific ADL and the patient motion deficits. The anticipatory

behaviour of the controller was only tested through a simula-

tion in virtual reality by the authors.

B. Corrective modes

As described in the former section, many assistive con-

trollers act on the trajectory followed by the subject not only

in the direction of the desired motion, but also applying

forces along the orthogonal direction, which is the domain

of corrective control.

A key to understand the differences between the two ap-

proaches is the capability to complete successfully a motion

without any effort from the subject: assistance is generally

able to move the limb towards the final target, if the subject

does not participate, while ideal corrective strategies cannot.

A similar concept can be expressed by considering the

time-dependency of the references. Assistive controller are

usually fed with desired trajectories, thus time-dependent

speed profiles. Pure corrective strategy is linked to the idea

of time-independence of the references, for example feeding

the controllers with desired path instead of trajectory. The

time-independence allows the robot to only act on the current

position to correct it along the orthogonal direction.

However, it is often difficult to make a clear distinction

between pure assistive control laws and pure corrective ones.

Currently there exist two approaches which provide pure

correction, or at least, in which assistance is clearly decoupled

from correction.

1) Tunneling: Tunnelling consists in creating virtual chan-

nels for the end-effector or the joints of the exoskeleton, in

which the subject moves: once he/she goes out of the channels,

the feedback control takes him back into the channel, as if a

spring impedance was attached from the limb to the center

of the virtual channel. In addition, to prevent the subject

from getting stuck during the motion, a supporting force in

the direction of the channel is generally added. Therefore,

tunneling strategies can be seen as an impedance control with

a path-centred no-action zone, i.e. one can clearly consider

the supporting force field as an assistive term, and the spring-

damper-like force in the direction of the centre of the channel

as a corrective term.

In [18] the channel was acting on the end-effector position

and the supporting force field was adapted depending on

minimally desired mean velocity of the subject’s limb. The

system was also fed with control inputs from the gravity and

friction feedforward compensator. The reference trajectory was

divided in subtrajectories, and a trajectory generator algorithm

updated the tunnel direction every time the subject achieved a

subtask. Pre-clinical testing on healthy and 3 impaired subjects

showed the feasibility of such control paradigm. The same

controller was tested in [19] in a clinical experiment with 77

stroke survivors. Various games and ADLs were tested in a

virtual reality environment, augmented with online audiovisual

information to increase subjects motivation. After 8 weeks of

training, small improvements in FMA scores were higher in

patients assigned to robotic therapy than in those undergone

conventional therapy. A similar approach was adapted by [92].

Due to the cable-driven system, simultaneously to the high-

level tunnelling controller, a low-level PI plus feedforward

control kept the tension of the cables [93]. Pre-clinical testing

on 8 healthy and 1 impaired subject, showed that the subjects

constantly moved closer to a prescribed path in the training

trials.

2) Coordination control: When considering corrective

modes, the aim of the control law is generally to regulate

the coordination (also called “synergies” [94]) during the

movement, i.e. controlling joint positions and/or velocities

relative to the others. Trying to coordinate inter-joint positions

or speeds is a way to solve the reference time-dependency

problem, which remain a constraining parameter of the assis-

tive controllers.

In [95] the time-independent functional training (TIFT)

algorithm was introduced: virtual joint-space walls kept the

subject close to the ideal joint-space path, acting simulta-

neously on multiple joints motion as PD position controls.

This strategy provided assistance as correction to bad motion

coordination of the main joints active during the task, in par-

ticular on shoulder and elbow joints. This controller was tested

on 12 impaired subjects in a 3-month pilot study [96]. Data

suggested that this robotic therapy could elicit improvements

in arm function that were distinct from conventional therapy
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(improved inter-joint coordination), and thus it could integrate

to conventional methods to improve outcomes.

In [34] an alternative approach was presented, the Kine-

matic Synergy Control (KSC). In this work, the problem of

tracking was projected from the reference trajectory space

to the joint velocities synergy space through Principal Com-

ponent Analysis (PCA). The exoskeleton generated reactive

viscous joint torques to impose specific patterns of inter-

joint coordination without constraining the hand motion. This

controller was tested with healthy subjects and, preliminarily,

with hemiparetic patients, and showed its the ability to impose

constrained synergies without altering the hand motion.

[97] developed an approach based on correction of the

pathological involuntary flexion torque, which occurred at the

elbow during shoulder abduction. During an evaluation session

with the robot, the patients pathological involuntary torque was

measured and a counter-active, just-as-needed torque was then

calculated and applied during the therapy. A case study on one

patient showed a reduction of elbow involuntary elbow flexor

torque during shoulder abduction. [26] used a similar approach

to develop a passive stretching controller for multiple joints.

However no active modes of therapy, during which the subject

is actively participating in the movement, based on previously

identified angle-torque relationships, have been developed to

target patterns of inter-joint coordination.

III. DISCUSSION

In this paper, we reviewed the currently available con-

trol strategies for robotic exoskeletons for neurorehabilitation,

among about 100 publications and about 30 existing devices.

This review allowed us to spot several issues and scientific

barriers potentially limiting - to the authors’ opinion - the

rehabilitative performances of current exoskeleton devices. In

the following section, we discuss some of these analyses.

A. Hardware limiting control possibilities

One of the performance indexes that quantifies an exoskele-

ton ability to precisely produce a programmed assistance to

the subject, is its transparency. This may seem contradictory,

since transparency measures the robot ability of not applying

any assistance/resistance to free motion. But this property

is a good indicator for force precision, since any failure to

reach transparency during a zero-resistance experiment will be

reproduced and act as a bias in a non-zero force experiment.

Transparency therefore qualifies the mechanical properties

of the structure (weight, inertia, friction, etc.), of its actuation

(backdriveability, friction, etc.), and of the performances of the

low level control dedicated to the compensations of these per-

turbing phenomena (feedforward compensation of the gravity

and friction, for example).

A lack in transparency can generate undesired resistances

during the upper-limb motion of subjects (even healthy), from

which excessive muscle efforts can arise to complete even

simple motions. This, obviously, can be negligible for healthy

subjects, even if it is already highly perturbing [98], but it

cannot be allowed with impaired patients during rehabilitation.

Moreover the lack of transparency can make almost impossible

to develop pure corrective strategies on the exoskeletons, since

it does not really allow shared control (the human on the

motion, the controller on the corrective part).

The transparency level directly influences the physical be-

haviour of the robot, and possibly perturbs the rehabilitative

control strategy of the robot. Therefore it would be necessary

to assess exoskeletons standard features. For example, simply

showing comparisons of motion ability (like range of motion)

of healthy subjects with and without the exoskeleton, almost

always lacks in exoskeleton design papers. Such an analysis

was recently performed on the only commercially available

exoskeleton for neurorehabilitation, and shows that it signifi-

cantly affects the reaching movements of healthy subjects [99].

Clinical results obtained with any platform are possibly

not qualifying the rehabilitation capacity of a control strategy

but rather the global performance of the system. A specific

care should therefore be given to draw general conclusions on

rehabiltiation approaches with exoskeletons.

Similarly, while researchers are starting to consider ex-

oskeletons sensors as a direct source of data to evaluate patient

state and recovery evolution [100], it is important to highlight

the fact that the capability of modern exoskeletons to provide

correct assessment of quality of human motion, directly lies

on their ability to be transparent.

B. The problem of reference definition

As showed in section II, a central issue for most research

groups is related to the generation of healthy reference tra-

jectories and thus, to the computation of error profiles to

supply the feedback controllers. Physiotherapists also share

the necessity of reference for applying correct torque profiles

on the impaired arm and, more generally, evaluating subject

movements. With the experience, they learn how to correctly

manipulate impaired limbs to induce neuroplasticity and re-

cover motor control. Translating this qualitative feature into a

quantitative reference for the robotic devices is a key issue,

especially for 3D movements when considering interaction at

the joint level.

The reference generation is a two-level problem. At the low

level, the exoskeleton must be fed with human arm suited

feasible trajectories to successfully complete the desired task,

but taking into account the natural redundancy of human

arms, at the high level, the issue is to select one of the

many correct possibilities to perform the motions and achieve

the task. Additionally, the ideal reference trajectory should

be customized on the patient features, taking care of the

specific arm physical characteristics and impairments, such as

paralysis, spasticity, and joint limitations.

It is important to underline how the reference generation is

a different problem from controlling the exoskeleton. Indeed,

the same controller may lead to different rehabilitative perfor-

mances being fed with references computed by using different

techniques.

In section II, we described mainly three different approaches

for generating motion references. The simplest technique is

about directly recording the motion of the human limb (teach-

ing/recording). This generation process of recording and ex-

tracting a trajectory is time-consuming and not generalizable to
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multiple tasks, but it produces always feasible and customized

references.

A second common technique is about using (optimization

algorithms). Computational models usually exploit minimum

jerk optimization to generate the desired smooth feasible

trajectory. This optimization technique has its advantages in

the quickness of providing a solution, but this solution is still

valid for one-single task.

The last technique is about the possibility of anticipating the

human CNS by detecting motion intentions, or more simply

by detecting, in a set of predefined trajectories, the one to

be performed (motion intention detection). This approach is

spreading as a common solution for many research groups,

even if there exist generic technical issues concerning, for

example, discrete signal extraction (either from the brain or

from the muscles), noise deletion, etc. Motion intention detec-

tion can be realized through force/torque sensors (for example

in [101]), EMG ([65] and [30]), or through oculography and

EEG ([72] and [23]). The resulting controllers appear often to

be passive-triggered controllers which replay pre-determined

reference trajectories either recorded or computed through

optimization algorithms.

A fourth solution to produce motion models is the gener-

ation of feasible trajectories through the evaluation of statis-

tically consistent patterns performed by a sufficient number

of healthy subjects. Nonetheless, due to its complexity, this

technique is not commonly used for rehabilitation robotics and

only one example can be found in [91].

Despite the above-mentioned strategies, it is important to

underline that relying on a reference trajectory limits the

efficacy of the rehabilitation therapy since these trajectories

are generally position and time dependent and, therefore, they

are complex to generalize for different movements, targets,

or tasks. This means that the patients freedom of movement,

within the exoskeleton, is limited to specific movements. These

mode of interaction constantly imposing constraints (more or

less rigidly) is less physiological than conventional therapy

(like, for example, the Bobath therapy, during which the

patient is active, occasionally guided or corrected, but not

constantly constrained to follow a fixed gesture) and therefore

its efficiency is questionable.

In order to increase human involvement in the rehabilitative

therapy, thus increasing the efficacy of the therapy itself,

exoskeletons controllers should target goal-independent strate-

gies. Ideal goal-independence is a solution which allows mul-

tiple targets reaching and tasks achievement, without acting on

the controller, neither the control law nor the reference. Thus,

in this case, the reference is necessary described at a higher

level of abstraction than the simpler common trajectory ref-

erence. Together with goal-independence, time independence,

as defining path references rather than trajectories, is a key

factor to allow the subject to actively make an effort to achieve

the task, not being constrained by following rigid planned

trajectories.

C. Addressing coordination control

Time independence translates into a necessity to develop

inter-joint/coordination controllers, more than trajectory track-

ers. In fact, this kind of controllers requires relative references

(for example, speed profiles of joint synergy coordination)

more than absolute ones, as, for example, joint positions pro-

files in the case of trajectories. The importance of measuring

and controlling joint synergy is primary to better understand

quality of movements during rehabilitative therapy. Post-stroke

patients frequently adopt negative compensatory strategies that

are difficult to be analysed without coordination assessment.

In [100] authors review current assessment strategies for

motor recovery with robotic exoskeletons after stroke. Their

emblematic conclusion says that most assessments for robotic-

mediated therapy addresses end-point movements, ending in

a minimal measure of compensatory joint synergy strategies.

Without the latter, it is complex to distinguish between genuine

motor recovery and dangerous compensation.

Few research groups developed solutions aiming at con-

trolling synergy joint coordination [97], [26], [95], [34], as

described in section II-B2. However, for all these approaches,

only preliminary results exist.

D. Clinical testing issues

What arises from the general overview of this state of the

art and of Table II, is the limited number of studies and

experiments both on healthy and impaired subjects. Indeed,

among all the devices, only 8 of them were clinically tested,

i.e. providing comparisons between different developed control

strategies and/or standard therapies, with impaired subject

control groups. Furthermore, only three studies [19], [46],

and [22], involved 20 or more stroke survivors. For all these

studies, robotic-mediated therapy generally produced small

improvements in impairments measures and motor recovery

compared to standard therapy on the same number of rep-

etitions. This improvements were usually detected by FMA,

range of motion tests, and measurements of strength. Only

one study [22] described functional improvements after robotic

training. Clearly, neither motor recovery nor functional im-

provement alone necessary translate to improvements in ADLs

or in quality of motions, since there may still be unhealthy

compensations (in case of functional improvements) or no real-

life relevance (in case of motor recovery) [10].

A problem arising is the absence of a standard assessment

method of the results of the robotic-mediated therapy, espe-

cially with exoskeletons (i.e. with multiple interaction points):

the chosen kinematic parameters specify too often end-point

movements only, and are not able to address directly motion

coordination. Moreover, these parameters show insufficient

correlation with standard clinical assessment [100], thus they

are difficult to be used as predictor to the clinical outcomes

of robot-mediated therapy.

However, it is important to underline that each single clini-

cal result is strictly linked to the device and the selected control

strategy. In fact, every test is the result of a combination

of the mechanical properties of the available exoskeleton, its

transparency level, the chosen control strategy, and the type of

generated reference. Thus, it is yet difficult to produce generic

conclusions about the results of exoskeleton-mediated therapy.
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Ref. Device Year No. of subjects Control strategy Summary of the results

[19]* ARMin III 2014 77 Tunneling Small improvements in FMA score

[46]* Pneu-WREX 2012 26 Assistance-as-needed Small improvements in FMA score

[22]* BONES 2013 20 Assistance-as-needed
Improvements in FMA and functional tests (like
WMFT), no differences between multi-joint/single-
joint training

[85]* EXO-UL7 2013 15

BT (mirroring),
and UT (partial
assistance)

Improvements in score of few efficency indexes
but small improvements in FMA score, BT better
performing than UT

[17]* ARAMIS 2012 14 Rec-and-Replay
Proof-of-concept test, similar score as other test with
exoskeletons

[40]* L-Exos 2012 9 Partial assistance Small improvements in FMA score

[88] RUPERT IV 2011 8 Passive Feasibility test

[34]* ABLE 2012 7 Coordination control
Preliminary results on improvements on shoulder-
elbow coordination

[25]* EXO-UL7 2013 5
BT (mirroring), and
UT (transparency)

Same improvements as standard therapy, UT less
performing than BT

[26]* IntelliArm 2013 3 Passive stretching Reduction of cross-coupled stiffness

[23] BOTAS 2013 3 BMI Feasibility test

[92] CAREX 2014 1 Tunneling Preliminary results on better trajectory tracking

TABLE II
CONTROL STRATEGIES TESTED ON STROKE SURVIVORS WITH ROBOTIC EXOSKELETONS. THE ASTERISK * INDICATES CLINICAL TESTING, MEANING RESULTS PROVIDED

COMPARING DIFFERENT CONTROL STRATEGIES.
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